
 SQL Injection in Oracle Forms V1.01

© 2005 by Red-Database-Security GmbH 1/5

Summary: All Oracle Forms applications are vulnerable against SQL Injection by
default.
Oracle Applications >=11.5.9 is not affected due to the default setting
value “FORMSxx_RESTRICT_ENTER_QUERY = TRUE”.
(VU#718548)

About Oracle Forms: Oracle Forms 10g is Oracle's award winning Web Rapid Application

Development tool, part of the Oracle Developer Suite 10g. It is a highly
productive, end-to-end, PL/SQL based, development environment for
building enterprise-class, database centric Internet applications. Oracle
Application Server 10g provides out-of-the-box optimized Web
deployment platform for Oracle Forms 10g. Oracle itself is using
Oracle Forms for Oracle Applications.

Affected products: All versions of Oracle Forms (3.0-10g, C/S and Web), Oracle Clinical,

Oracle Developer Suite

Fix: Set the undocumented environment variable

FORMSxx_RESTRICT_ENTER_QUERY=true
(FORMS60_RESTRICT_ENTER_QUERY for Forms 6.x,
FORMS90_RESTRICT_ENTER_QUERY for Forms 9.x/10g)
and restart the Forms server. This environment variable disables the
possibility of using the query/where functionality.

or only if really need Query/Where:

 Write a PRE_QUERY/ON-ERROR-trigger for EVERY input field and

validate the entire input for EVERY Oracle Forms module (*.fmb)

 SQL Injection in Oracle Forms V1.01

© 2005 by Red-Database-Security GmbH 2/5

Background:
There is an (ancient often forgotten) Oracle Forms feature called “Query/Where” which
allows any user to modify existing SQL statements. This is a quite useful feature for power
users but also dangerous because every forms user can execute any SQL statement.

Short demonstration of SQL Injection

1. Start a Forms module and switch to the query mode and enter a colon (“:”) or ampersand
(“&”)

2. An empty Query/Where windows pops up

3. Enter an SQL statement

The following statement sends the result of the SQL statement “select username from
all_users where rownum=1” to a foreign (or internal) web server. Keep in mind that
utl_http.request accepts only one row of the results.

 SQL Injection in Oracle Forms V1.01

© 2005 by Red-Database-Security GmbH 3/5

The web server of the attacker now contains the result of the custom query:

192.168.2.200 - - [14/Feb/2005:10:42:20 +0100] "GET /SYS HTTP/1.1" 404 209

If your SQL statement is not correct like the following example

Oracle returns an error “FRM-40505: Oracle error: unable to perform query.”

You can obtain a detailed error message by selecting the “Display Error” in the “Help”
menu

 SQL Injection in Oracle Forms V1.01

© 2005 by Red-Database-Security GmbH 4/5

Impact:
The impact of the SQL injection depends on the architecture of your Forms application.

If the Oracle user used by the Forms application has DBA privileges (like Oracle
Applications), EVERY user can select any data in the database. Never set the value
FORMSxx_RESTRICT_ENTER_QUERY to FALSE in an existing Oracle Applications
environment because every user can execute ANY statement and see ANY data.

If your Forms application implements an own user concept (e.g. own user table including
passwords) it is possible that, other users could see the data (e.g. their
accounts/passwords/…).

In all other cases the Forms user can still execute PLSQL packages granted to public like
utl_http.

Fix:
There are two different possibilities to fix this problem:

(a) Disable the Query/Where function by setting the environment variable (introduced
with Forms 6.0.8.18.0) FORMSxx_RESTRICT_ENTER_QUERY=true
(xx=60 for Forms 6.x, xx=90 for Forms 9.x/10g)
and restart the Forms server.
Check if Query/Where is now disabled.

(b) Write a PRE_QUERY and an ON-ERROR trigger for EVERY input field to validate
the user input. An example of this can be found in Metalink note 163305.1.

Keep in mind that the solution suggested in this Metalink article is incomplete because
the checks for $ and # are missing.

 SQL Injection in Oracle Forms V1.01

© 2005 by Red-Database-Security GmbH 5/5

References:

• Metalink Document 163305.1: How to Disable the Query/Where in Forms
• Critical Patch Update - April 2005
• Hardening Oracle Application Server 9i and 10g:

http://www.red-database-security.com/wp/DOAG_2004_us.pdf
• Google Hacking of Oracle Technologies (e.g. Oracle Forms):

http://www.red-database-security.com/wp/google_oracle_hacking_us.pdf

History:

• 7-oct-2003 Oracle secalert was informed
• 7-oct-2003 Bug confirmed
• 12-apr-2005 Advisory version 1.00 published
• 15-apr-2005 Advisory version 1.01: CERT vulnerability number added

Other Oracle security related documents:

Hardening Oracle Application Server 9i Rel.1, 9i Rel.2 and 10g:
http://www.red-database-security.com/wp/DOAG_2004_us.pdf

Hardening Oracle DBA and Developer Workstations:
http://www.red-database-security.com/wp/hardening_admin_pc_us.pdf

Database Rootkits / Oracle Rootkits:
http://www.red-database-security.com/wp/db_rootkits_us.pdf

Google Hacking of Oracle Technologies:
http://www.red-database-security.com/wp/google_oracle_hacking_us.pdf

About Red-Database Security GmbH:
Red-Database-Security GmbH is a specialist in Oracle Security. We are offerings Oracle
security trainings, database and application server audits, penetration tests, oracle (security)
architecture reviews and software security solutions against Oracle rootkits.

Contact:
If you have questions or comments you could contact us via

info at red-database-security.com

http://www.red-database-security.com/wp/DOAG_2004_us.pdf
http://www.red-database-security.com/wp/google_oracle_hacking_us.pdf
http://www.red-database-security.com/wp/DOAG_2004_us.pdf
http://www.red-database-security.com/wp/hardening_admin_pc_us.pdf
http://www.red-database-security.com/wp/db_rootkits_us.pdf
http://www.red-database-security.com/wp/google_oracle_hacking_us.pdf

